Practical training on geophysical investigation: -Seismic survey at the 140 m gallery -

Yusuke Ozaki

What do you do when you want to know inside box?

- Shake the box
- Stick a needle
- Open the box
- Cut the box
- •••

- How to investigate inside?
 - If we don't want to destroy the target
 - When we cannot destroy the target

Geophysical exploration is one of the solutions.

 \bullet This may be more familiar for you…

Computed Tomography (CT) (X-ray tomography) Similar technique is applicable to the earth.

Most methods use phenomena that propagate subsurface.

- Seismic wave
 - Refraction survey (First-arrival traveltime tomography)
 - Reflection survey

• •••

- Electrical current (Direct current)
- Electromagnetic wave
 - Ground penetrating radar (GPR)
 - Time-domain electrical magnetic method
 - Magnetotelluric method
- Gravity
- Magnetic field

• • • •

Resolution and exploration depth are dependent on methods.

What can we know from the results of geophysical exploration?

• A seismic method can estimate the velocity of seismic waves.

$$V_p = \sqrt{\frac{K + 4/3 G}{\rho}}$$
 $V_s = \sqrt{\frac{G}{\rho}}$ E.g., stiffness of rock

• Electrical-related methods can estimate the distribution of electrical resistivity.

$$\rho_R = a R_w \varphi^{-n} S_w^{-m}$$
 E.g., water content in rock

Example of large-scale survey around Horonobe URL

Seismic reflection survey

Magnetotelluric survey

Target depth: ~km order

JAEA and CRIEPI (2021)

Example of survey in the Horonobe URL Seismic refraction survey

Example of survey in the Horonobe URL Electrical resistivity survey

The target of geophysical exploration in URL

- Excavation of tunnel
 - Damage surrounding rock \rightarrow Stiffness of rock decreases
 - Water drainage→Water content decreases
 - Excavation damaged zone.

Bossart et al., 2022

Target depth: several tenth cm

Example of survey results in the Horonobe URL

Step of data analysis

Step of data analysis

Picking of first-arrival time

Picking of first-arrival time

Processing for picking

• If highly frequent noise is an obstacle, filtering is applied.

• If the signal is small, the signal is amplified.

Get easy-to-read data for picking.

Picking of first-arrival time

1			
	No. (Receiver)	Arrival time	Propagation time
	30	0.007044	0.002481
	31	0.006973	0.00241
	32	0.006868	0.002305
	33	0.006856	0.002293
	34	0.006658	0.002095
	35	0.006622	0.002059
	36	0.006342	0.001779
	37	0.006236	0.001673
	38	0.006225	0.001662
/	39	0.006225	0.001662
	40	0.005932	0.001369
/	41	0.005698	0.001135
	42	0.005651	0.001088
	48	0.004563	0

Input data

Data of source

• For all source and receiver pairs, the same processes are done to obtain input data.

Step of data analysis

Data analysis

• Eikonal equation-based method. (Based on the governing equation of ray path)

Velocity in a cell

V1

V4

V7

Source

Ray-based method.

- Distance=L
- Traveltime=T
- Vp=L/t

To consider heterogeneity, discretize the domain.

V2

V5

18

V8

Distance in a cell

(Ray pass through)

5

Receiver

V3

V6

V9

6

 Measured time between source and receiver (T1) is described as:

$$T_1 = \frac{l_3}{V_3} + \frac{l_5}{V_5} + \frac{l_6}{V_6} + \frac{l_7}{V_7} + \frac{l_8}{V_8}$$

- Rewrite 1/V=S (Slowness)
 - $T_1 = l_3 S_3 + l_5 S_5 + l_6 S_6 + l_7 S_7 + l_8 S_8$

Data analysis

- The data of traveltime between multi-source and receiver pairs are obtained.
- A measured data is described as:

$$T_i = \sum_{j=1,N_e} l_j S_j \qquad i=1, N_d$$

N_d : Number of data N_e : Number of cell

After all data is gathered…

P-wave velocity field?

Ray tracing

- Ray path (path of first-arrival time) bends through the heterogeneity of velocity.
- Refraction is controlled by Snell's law.
- Refraction (bending of ray path) is needed to be considered for analysis.

Data analysis

• Model update is repeated iteratively.

Get image (example of the result at the 350m stage)

Question?