Experiments using a recoil-producing nuclear separator

Advanced Science Research Center, Japan Atomic Energy Agency Research Fellow Katsuhisa Nishio

Recoil-producing nuclear separator (JAEA Recoil Mass Separator)

 $\theta = 40^{\circ}$

The nuclei produced in the fusion reaction recoil and fly out in the same direction as the beam (set RMS in the zero-degree direction).

Reactions learned in practice

Beam energy and evaporated residual nuclei produced

Generation cross section of astatine evaporation residual nuclei

Velocity Filter (Velocity Selector)

Force applied by an electric field Force applied by magnetic field $\mathcal{F}_{E} = q \mathcal{F}$ $\mathcal{F}_{B} = q \mathcal{V} \times \mathcal{B}$

Apply a magnetic field so that it intersects the electric field, also make the forces work in opposite directions.

 $F_{\rm E} = q E$ $F_{\rm B} = q v B$

Both forces are balanced to move straight ahead. $(F_{\rm F} = F_{\rm B})$

 $\frac{E}{B} = v$

Through an evaporation residue (residue) or through a beam (beam), respectively.

 $\frac{E_{\text{residue}}}{B_{\text{residue}}} = v_{\text{residue}} \qquad \frac{E_{\text{beam}}}{B_{\text{beam}}} = v_{\text{beam}}$ $\frac{V_{\text{residue}}}{V_{\text{residue}}} = v_{\text{beam}} \qquad V_{\text{residue}} \begin{pmatrix} 199 \text{At} \end{pmatrix} = 0.50 \text{ cm/ns}$ $V_{\text{residue}} \begin{pmatrix} 34 \text{S} \end{pmatrix} = 3.01 \text{ cm/ns}$ $V_{\text{beam}} \quad V_{\text{beam}} \quad V_{\text{beam}}$

Ion's resistance to bending in magnetic field *B* and electric field *E* ($B\rho$ and $E\rho$)

Bp and Ep are ion (mass number A, kinetic energy ϵ , charge + q) specific values, the resistance to bending in magnetic and electric fields, respectively.

Recoil-producing nuclear separator (JAEA-RMS)

Target scattering tank (e.g. ¹⁶⁹Tm thin film target)

Charge reset Foil (film of carbon) Equilibrate charge distribution

Measure Elastic Scattering Silicon detector Evaporation residual nucleus cross section Necessary to determine

Make the beam glow

¹⁶⁹Tm thin film target

Setting up the electric and magnetic fields for RMS Determine the mass number A, kinetic energy E, and charge +q of the evaporating residual nucleus

α崩壊を観測する検出器

シリコン(Si)ストリップ検出器

Energy spectrum of alpha ray (example of measurement)

Digital data processing

Evaporation process may emit protons.

