Practical training on geochemical investigation: Geochemical monitoring and water sampling at the 250 m gallery

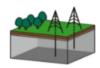
August 7th, 2023

Horonobe Underground Research Department Safety Assessment Research Group Keisuke Sakuma, Hiroaki Murakami, Fairat Koraphat

Contents

1. Why is geochemical investigation important?

- 2. Today's schedule and underground facility
- 3. Practice in the underground facility
- 4. Lectures on the Ground


Why is geochemical investigation required?

 The solubility of radionuclides will be affected by the groundwater pH and ORP (oxidation-reduction potential), which are physicochemical parameters.

 To judge whether groundwater in the repository (candidate) has chemically favorable conditions (Neutral to low-alkaline pH, reductive, low carbonate concentration).

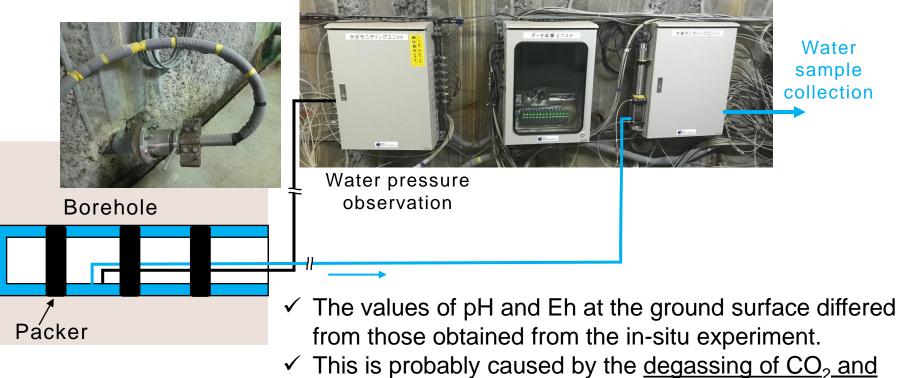
Groundwater sampling: from the surface

- The simplest way:
 - Pumping water from a borehole

Preliminary investigation

出典:資源エネルギー庁ウェブサイト (https://www.enecho.meti.go.jp/category/ele ctricity_and_gas/nuclear/rw/hlw/hlw01.html)

Pump Valve Pressure Transducer ✓ There are several points to be taken care of for the sampling from the ground Thermometer surface. Packer


Groundwater sampling: from the gallery

• We can collect water from a borehole.

Detailed investigation

出典:資源エネルギー庁ウェブサイト (https://www.enecho.meti.go.jp/category/ele ctricity_and_gas/nuclear/rw/hlw/hlw01.html)

 CH_4 during the pumping and subsequent changes in redox conditions in the water.

Objective of this lecture

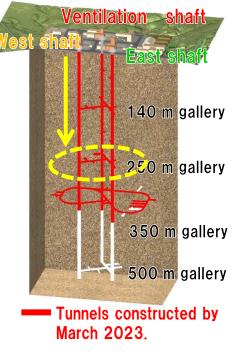
- Measure the correct value of the groundwater
- Provide the suitable sampling procedure and accurate chemical analysis which are required to accurately characterize groundwater chemistry
- Understand the methods and points of caution for obtaining reliable geochemical data on groundwater

Contents

1. Why is geochemical investigation important?

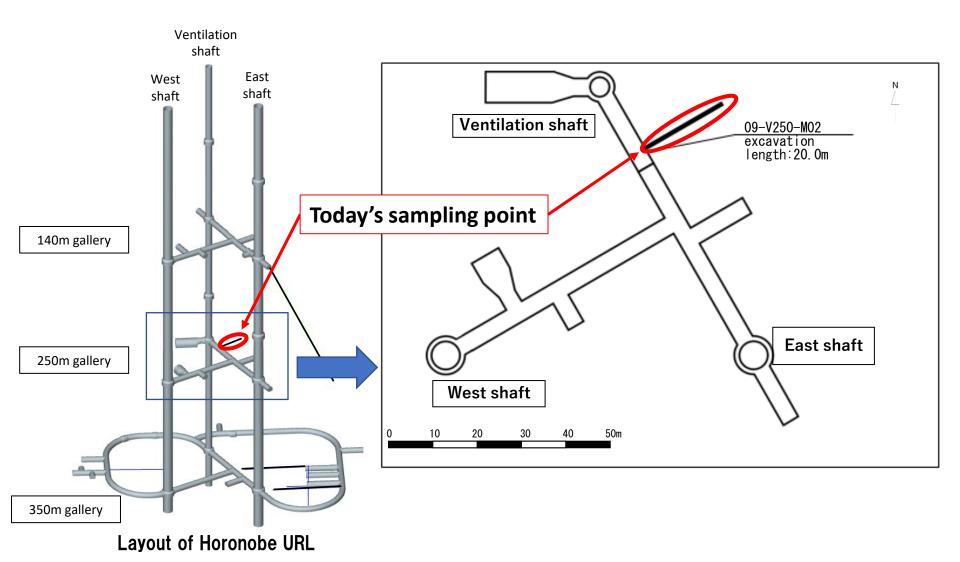
2. Today's schedule and underground facility

- 3. Practice in the underground facility
- 4. Lectures on the Ground


Today's schedule of practical training

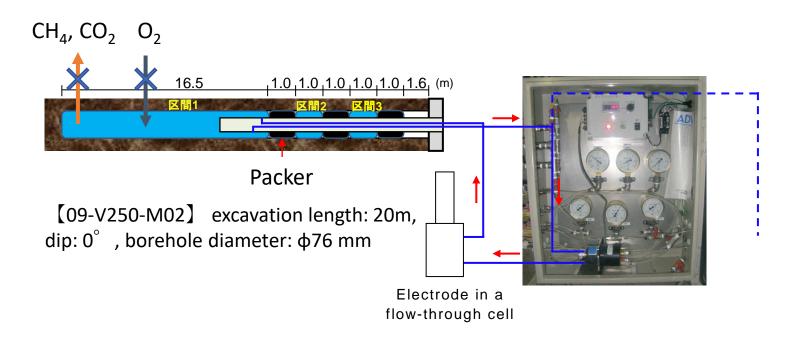
Group A

Time	min.	Content
13:30	15	Lecture
13:40		\downarrow \downarrow
	5	To entrance of URL (by bus)
13:50	10	To underground (by elevator)
		\downarrow
14:00	20	Analyzing with sensor
		\downarrow
14:10		\downarrow
		↓
14:20	25	Sampling •
1100		adding reagents (A)
14:30		↓
		↓
14:40	1.0	↓
	10	To the ground
14:50		\downarrow
	5	Back to Yume-chisou-kan (by bus)
15:00		Changing clothes

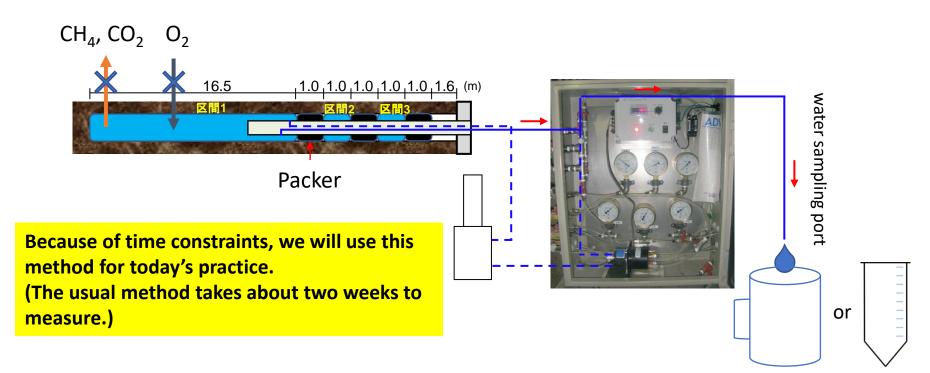

Group B

Time	min.	Content
10:30	15	Lecture
10:40		\downarrow \downarrow
	5	bus
10:50	10	elevator
		\downarrow
11:00	20	Analyzing
		with sensor
11:10		\downarrow
		\downarrow
11:20	25	Sampling
		\downarrow
11:30		\downarrow
		\downarrow
11:40		\downarrow
	10	elevator
11:50		\downarrow
	5	bus
12:00		Changing clothes

Layout of Horonobe URL


Today's sampling point

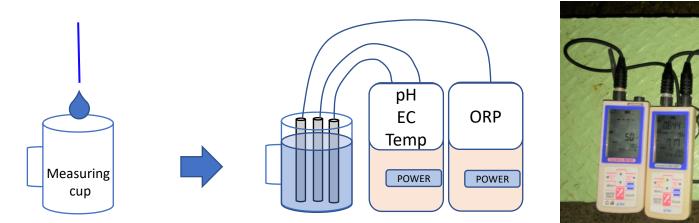
Geochemical monitoring system at Horonobe URL


10

- The borehole is sealed off by a packer, which keeps reductive groundwater in place.
- This system can be used for monitoring pH and ORP without degassing/contact with the air.

Geochemical monitoring system at Horonobe URL

- We can also collect groundwater from a borehole.
- For the reliable geochemical data, the following points should be noted
 - ✓ Oxygen intrusion into groundwater
 - ✓ Degassing of dissolved gases from groundwater
 - ✓ Contamination


Contents

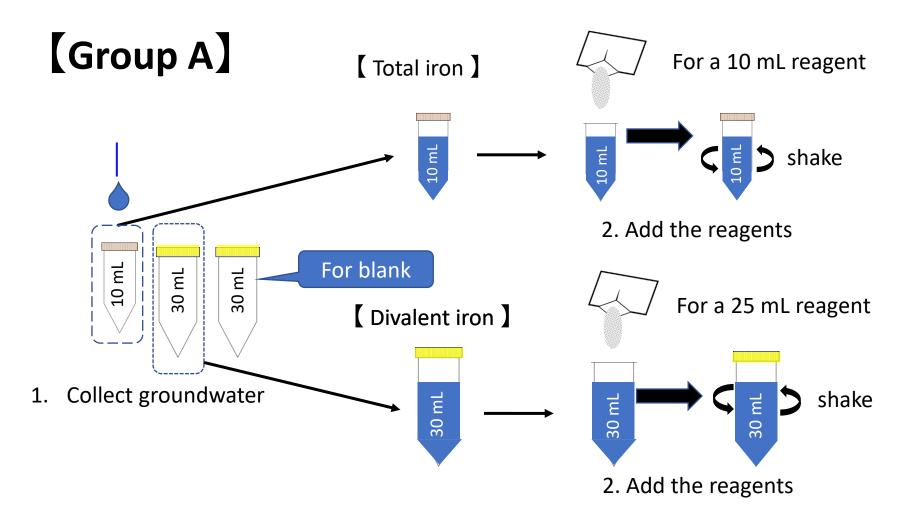
1. Why is geochemical investigation important?

- 2. Today's schedule and underground facility
- 3. Practice in the underground facility

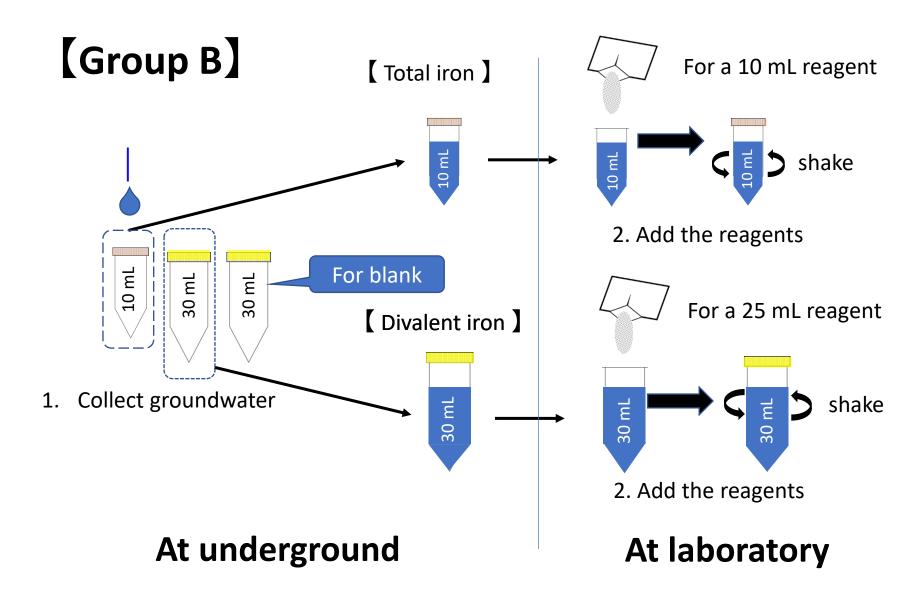
4. Lectures on the Ground

In-situ groundwater analysis of physicochemical parameter

- 1. Collect groundwater
- 2. Dip the electrode connected to each meter


13

3. Once the values become stabilized, write the physicochemical parameter


Sample name	Data, time	рН	ORP(mV)	EC(mS/m)	Temp.(°C)

In-situ groundwater analysis of dissolved iron(total iron, divalent iron) at underground and laboratory

At underground

In-situ groundwater analysis of dissolved iron(total iron, divalent iron) at underground and laboratory

Sampling list

		amount	Remark	
	(1)	10 mL		
		10 mL		
•		10 mL	For total iron	
A		10 mL	i or totar non	
Adding the reagent		10 mL		
at underground		10 mL		
	(2)	(2) 30 mL	For divalent iron	
	(2)	30 mL		
	(3)	30 mL	For blank	
		10 mL		
		10 mL		
	(1)	10 mL	For total iron	
В	(2)	10 mL		
		10 mL		
Sampling only		10 mL		
		30 mL	– – – – –	
		30 mL	For divalent iron	
		30 mL		
	(3)	30 mL	For blank	
С	(1)	10 mL	For total iron	
Already sampled	(2)	30 mL	For divalent iron	
	(3)	30 mL	For blank	

Contents

- 1. Why is geochemical investigation important?
- 2. Today's schedule and underground facility
- 3. Practice in the underground facility
- 4. Lectures on the Ground

Analysis of dissolved iron (total iron, divalent iron)

Objective

- Analyze dissolved iron, which is sensitive to redox reactions
- Understand the difficulties in assessing the in situ quality of reductive groundwater

Contents

【Lecture】 Absorption spectrophotometry

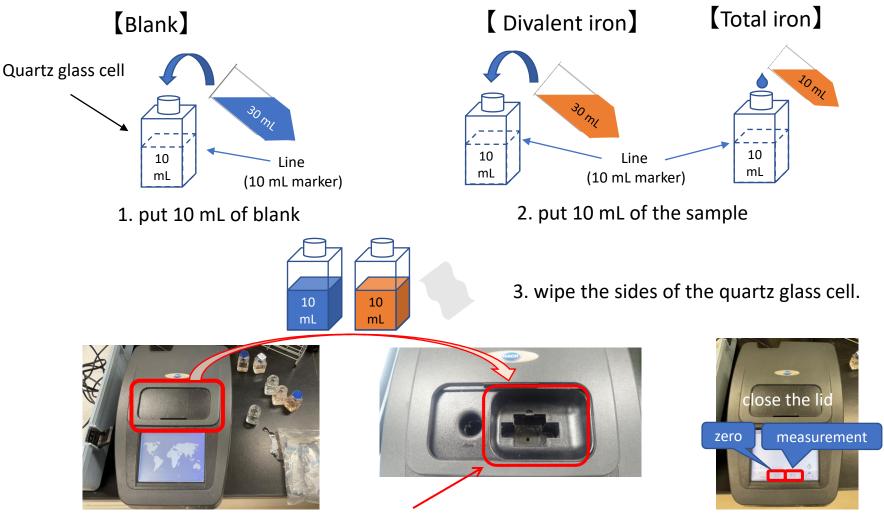
(Practical training)

- Analyze the dissolved iron in groundwater
- compare and discuss the results of samples with different timings of water sampling and reagent addition

Analysis of dissolved iron (total iron, divalent iron)

Dissolved iron: dissolved and ionized iron (Fe³⁺, Fe²⁺) in water

Absorption spectrophotometry (1, 10-phenanthroline method) [Divalent iron, Fe²⁺]


- 1, 10-phenanthroline forms a complex only with Fe²⁺ (without Fe³⁺) (giving a reddish-orange color)
- Add the reagent to the sample and determine the amount of complexation by absorbance at a wavelength of 510 nm.

【Total iron】

• Determined by complexation after reduction of dissolved iron to Fe²⁺.

Fe²⁺–Phenanthroline complexes

Analytical procedure for dissolved iron (total iron, divalent iron)

- 4. <u>set the blank sample in the absorbance spectrophotometer</u>, measure at 510 nm wavelength, and press zero 0.
- 5. set the sample for total iron or divalent iron in the absorbance spectrophotometer, press the measurement button, and note the measurement results.

Analysis of dissolved iron (total iron, divalent iron)

Analysis results		
Sample name		
Data and time of the sample collection		
Analysis date		
Total iron concentration (ppm)		
Divalent iron concentration (ppm)		

Key Points for Consideration

- Relationship between total iron concentration and divalent iron concentration
- Difference in the percentage of divalent iron and the concentration of dissolved iron between the analysis results of samples immediately after collection and a few days after collection

Summary

For geochemical analysis of groundwater, important points are the following;

- Necessary the accurate state of groundwater in the deep underground
- Recognize that the geochemical condition changes by sampling method
- Prevent the occurrence of artificial influence, such as oxidation, degassing, and contamination during sampling