November 2023 Nuclear Human Resources Initiative Practicum Kentaro Hirose

Derivation of evaporation residual nucleus cross section

Nuclei produced in the evaporation process following nuclear fusion

Cross-sectional area · · · Ease of reaction

Counting $N\left(\begin{array}{c}199\\85\end{array}\right)$ (1/2)

Count the number $N(\frac{199}{85}At)$ of ^{199}At (2/2) $\sigma = \frac{N(\frac{199}{85}At)}{N_P \cdot N_T}$

	charge state		
	16	17	18
¹⁹⁸ At		11.65	11.00
¹⁹⁹ At	12.44	11.71	11.06
²⁰⁰ At	12.50	11.76	11.11

No difference in m/q = orbits are close \rightarrow Not only ¹⁹⁹At reaches the detector

¹⁹⁹At has a 90% probability of emitting an alpha ray of 6.643 MeV. Count the number from the spectrum measured by the detector.

$$N(6.643 \text{MeV}) = N(^{199}_{85}\text{At}) \times 0.18 \times 0.90$$
Probability of reaching the detector
Probability of emitting an alpha ray of 6.643 MeV

Count (number of incident beams N_B) × (number of targets N_T) $\sigma = \frac{N(\frac{1}{85}At)}{N_T + N_T}$

(*) Peak at 6.643 MeV measured with Si detector , cross sections can be derived by simply counting the number of elastic scattering peaks measured with a PIN diode.