Derivation of evaporation residual nucleus cross section

Nuclei produced in the evaporation process following nuclear

 fusion

Cross-sectional area • . • Ease of reaction

The nuclear beam ${ }^{34} \mathrm{~S}$ is applied to the target nucleus ${ }^{169} \mathrm{Tm}$, The number of residual nuclei ${ }^{199}$ Atproduced is,

Number of ${ }^{34}$ S beam nuclei to be hit
Number of target nuclei ${ }^{169} \mathrm{Tm}$ to be hit
is proportional.

$\left.{ }^{*}\right) 1\left[\mathrm{~cm}^{2}\right]$ is too large a unit Use $10^{-28}\left[\mathrm{~m}^{2}\right]=1[\mathrm{~b}]$ (b:barn).

Counting $N\left({ }_{85}^{199} \mathrm{At}\right)(1 / 2)$

$$
\sigma=\frac{N\left(\begin{array}{c}
199 \\
85 \\
\mathrm{At})
\end{array}\right.}{N_{B} \cdot N_{T}}
$$

${ }^{199} \mathrm{At}^{q+}$ (Orbit of charge state q)
If $q=16$ is set to pass through the RMS, $q=15$, 17 , etc. will not reach the terminal detector.
${ }^{199}$ At (23.6012 MeV) Shima Calculation

Count the number $N\left({ }_{85}^{199} \mathrm{At}\right)$ of ${ }^{199} \mathrm{At} \quad(2 / 2) \sigma=\frac{N\left({ }_{85}^{199} \mathrm{At}\right)}{N_{B} \cdot N_{T}}$

$$
\begin{aligned}
& { }_{85}^{198} \mathrm{At} \longrightarrow \begin{array}{c}
E_{\alpha}= \\
T_{1 / 2}=4.753 \mathrm{MeV}(97 \%)
\end{array} \longrightarrow{ }_{83}^{194} \mathrm{Bi} \\
& { }_{85}^{199} \mathrm{At} \longrightarrow \begin{array}{c}
E_{\alpha}= \\
T_{1 / 2}=7.643 \mathrm{MeV}(90.0 \%)
\end{array} \longrightarrow{ }_{83}^{195} \mathrm{Bi} \\
& { }^{200} \mathrm{At} \longrightarrow E_{\alpha}=6.465 \mathrm{MeV}(57 \%) \longrightarrow{ }_{83}^{196} \mathrm{Bi}
\end{aligned}
$$

	charge state		
	16	17	18
${ }^{198}$ At	12.38	11.65	11.00
${ }^{199} \mathrm{At}$	12.44	11.71	11.06
${ }^{200}$ At	12.50	11.76	11.11

No difference in $m / q=$ orbits are close \rightarrow Not only ${ }^{199}$ At reaches the detector

${ }^{199}$ At has a 90% probability of emitting an alpha ray of 6.643 MeV . Count the number from the spectrum measured by the detector.

Count (number of incident beams $\left.N_{B}\right) \times\left(\right.$ number of targets $\left.N_{T}\right) \sigma=\frac{N\left({ }_{85}^{199} \mathrm{At}\right)}{}$

$\rightarrow \Delta \Omega=3.49 \mathrm{msr}$

$$
\begin{aligned}
& N_{\text {ela }}=\left(\frac{d \sigma_{\text {Ruth }}}{d \Omega}\right) \cdot \Delta \Omega \cdot N_{B} \cdot N_{T} \\
& \frac{1}{N_{B} \cdot N_{T}}=\left(\frac{d \sigma_{\text {Ruth }}}{d \Omega}\right) \frac{\Delta \Omega}{N_{\text {ela }}}=\frac{9.98}{N_{\text {ela }}}[\mathrm{mbarn}]
\end{aligned}
$$

Variables N_{B} and N_{T} can be erased.
You don't need to know directly how much of the beam you hit!
No need to know the variation of N_{T} due to irradiation! Furthermore, these errors are not reflected in the results!

$$
\sigma=\frac{N\left({ }_{85}^{199} \mathrm{At}\right)}{N_{B} \cdot N_{T}}=\left(\frac{d \sigma_{\text {Ruth }}}{d \Omega}\right) \frac{\Delta \Omega \cdot N\left({ }_{85}^{199} \mathrm{At}\right)}{N_{\text {ela }}}=\frac{9.98}{0.18 \times 0.90} \frac{N(6.643 \mathrm{MeV})}{N_{e l a}}[\mathrm{mbarn}]
$$

(*) Peak at 6.643 MeV measured with Si detector, cross sections can be derived by simply counting the number of elastic scattering peaks measured with a PIN diode.

